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ABSTRACT

Aim We analysed marine phytoplankton diversity data as a function of
latitude, temperature, primary production and several environmental and
biological variables to ascertain whether large-scale variability in the diversity of
marine nano- and microphytoplankton (including diatoms, dinoflagellates and
coccolithophores) follows similar patterns to those observed for macroorganisms.
For the first time we explored these relationships after correcting the observed
patterns of species richness by sampling effort.

Location The global ocean.

Methods To standardize the estimates of species richness by sampling effort we
used interpolation and extrapolation based on Hill numbers and shareholder
quorum subsampling (SQS) methods. Then, we fitted linear and quadratic models
to species richness data to explore their variability with latitude, inverse tempera-
ture and biomass. These relationships were compared with the patterns obtained
from non-standardized data. In addition, we used a stepwise multiple linear regres-
sion model to explain the variability of species richness as the combined effect of
multiple drivers acting together.

Results Marine phytoplankton diversity was weakly correlated with latitude, tem-
perature or biomass. The hotspots of species richness at intermediate latitudes
largely vanished after standardization for sampling effort. Neither latitude, tem-
perature, primary production (as diagnostics of energy supply) nor any other
variable or combination of variables, explained the patterns of phytoplankton
species richness.

Main conclusions None of the hypotheses tested explained a significant amount
of the variability in species richness. The patterns observed for microorganisms in
previous studies may have resulted at least partially from differences in sampling
effort along productivity gradients and systematic undersampling of species. We
conclude that large-scale processes such as passive dispersal and recurrent habitat
recolonization dominate the distribution of species. Sampling protocols and data
analyses must be improved in order to obtain estimates of diversity that are com-
parable across ecosystems.
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INTRODUCTION

The latitudinal diversity gradient (LDG), which predicts a

decline in species richness from the equator to the poles, has

been reported for macro- and microorganisms in aquatic (fresh-

water and marine) and terrestrial systems (Pianka, 1966;

Fuhrman et al., 2008; Stomp et al., 2011). The mechanisms that

lead to the LDG have long been discussed (Pianka, 1966;

Hillebrand, 2004) and several ecological, historical and evolu-

tionary explanations have been proposed (Willig et al., 2003;

Mittelbach et al., 2007). The ‘species–energy’ hypothesis states

that the LDG is generated and maintained by an equatorward

increase in the amount of incoming energy. According to this

hypothesis, the biological diversity of an ecosystem is related to

the availability of kinetic and potential forms of energy in the

environment, expressed as temperature and net primary pro-

duction, respectively (Allen et al., 2007). Founded on the

concept of the metabolic theory of ecology (MTE) it has been

suggested that temperature could control the probability of

mutation and speciation (Allen et al., 2007) by adjusting the

kinetics of enzymatic reactions. At low latitudes, higher incident

solar radiation and consequently higher temperatures can thus

regulate the latitudinal distribution of species through regional

variations in the rate of diversification. Primary production, the

rate of energy capture and carbon fixation by primary produc-

ers, has been also proposed as an important factor controlling

the number of species present in the community, but the mecha-

nisms underlying the productivity–diversity relationship (PDR)

are not clear and its shape has been found to depend on the

type of organism and the scale of observation (Mittelbach

et al., 2001; Chase & Leibold, 2002). For aquatic microorgan-

isms, this relationship has been proposed to be ‘hump-shaped’

(Horner-Devine et al., 2003; Irigoien et al., 2004; Stomp et al.,

2011), such that diversity increases with the amount of resources

but decreases in highly productive environments, where a few

dominant species account for the bulk of community biomass.

However, differences in sampling effort across ecosystems

and/or time periods could bias the intercomparison of data sets,

distorting the patterns of species richness reported for these

marine microorganisms (Cermeño et al., 2013).

The growth of marine phytoplankton depends on their ability

to acquire and use resources, and hence the geographical vari-

ability of light regimes and nutrient supply might be involved in

controlling the large-scale distribution of phytoplankton species

in the ocean. However, microorganisms have huge populations,

broad dispersal ranges and short generation times which decrease

the probability of local extinction. These features of microbial

populations led to the idea that broad-scale processes, such as

dispersal and recurrent habitat recolonization, reduce the effect

of environmental factors in shaping the patterns of microbial

diversity, maintaining a large pool of coexisting species within

local communities (Finlay, 2002; Gibbons et al., 2013).

The scarcity of field data, the systematic undersampling of

marine phytoplankton communities (Cermeño et al., 2013;

Rodríguez-Ramos et al., 2014) and the idiosyncrasy of different

observers in taxonomic assignation (Irigoien et al., 2004;

Cermeño et al., 2013; Chust et al., 2013) limit our ability to

obtain accurate estimates of species richness, delineate broad-

scale patterns and identify the underlying mechanisms. Here, we

use two extensive data sets, including species composition and

several biotic and abiotic variables, to investigate the patterns of

marine phytoplankton diversity in the global ocean. A novel

contribution of this work is the careful selection of samples and

data analysis in order to avoid some of the main shortcomings of

previous studies. Here: (1) cell counts and taxonomic identifi-

cations were conducted by a single expert (D. S. Harbour, Plym-

outh Marine Laboratory, Prospect Place, West Hoe, Plymouth

PL1 3DH, UK) (Sal et al., 2013); (2) we compiled data collected

during all seasons over several years and at different regions

around the worlds’ oceans, including a large variety of habitats,

to avoid spatiotemporal dependence in our results; and (3) we

explored for the first time numerous potential explanatory vari-

ables and mechanisms while controlling for the effect of differ-

ential sampling effort across data sets. Our goals were: (1) to test

whether the predictions of the LDG and the MTE apply for

marine nano- and microphytoplankton; (2) to investigate the

shape of the PDR at different scales of observation (from local to

global); and (3) to identify the combination of biological and

environmental variables which best explain the patterns of

species richness at a global scale.

METHODS

Data acquisition

A complete list of the variables included in each data set, their

units, the number of observations and a brief definition/

description is available in Table 1.

The global database

A very valuable data set, the global database (GD) was compiled

by Sal et al. (2013), comprising data collected world-wide on

microplankton species composition and hydrographic, environ-

mental and biological variables, covering a great variety of

marine ecosystems from coastal to open-ocean areas and from

polar to equatorial latitudes (see Sal et al., 2013, for further

details on methodologies). Within the original array of species,

we selected those corresponding to phytoplankton taxa

(diatoms, dinoflagellates and coccolithophores). Our final data

set includes S = 651 species and n = 744 sampling sites. As the

volume settled per sample is unknown, we assumed that cell

counting was always done on 50-ml seawater samples, which is

commonly used as the ‘standard’ volume. Then, abundances

were extrapolated from the reported cell densities to a total

abundance in 50 ml. Although it is possible that in high-biomass

conditions the volume settled was smaller, the number of poten-

tially biased cases is low enough [in only 15% of the samples was

the chlorophyll a (Chla) concentration was higher than

3 mg m−3] to have any significant influence over our results.

Having the total number of individuals counted per sample

allows the standardization of raw species richness as a function
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of sampling effort (number of individuals counted per sample).

Finally, we selected only near-surface samples (depth < 20 m) to

avoid any potential interference between light availability and

diversity.

Atlantic meridional transects

We compiled data on physical, chemical and biological variables

concurrently determined during four Atlantic meridional

transects (AMTs) carried out on board RRS James Clark Ross

during September and October 1995 (AMT-1), April and May

1996 (AMT-2), September and October 1996 (AMT-3), and

April and May 1997 (AMT-4), crossing temperate, subtropical

and tropical regions in the North and South Atlantic Ocean

(Marañón et al., 2000). Seawater samples were collected at 25

sampling stations distributed along each latitudinal transect,

from five to ten depths in the upper 200 m of the water column.

Sampling depths were selected according to the vertical distri-

bution of fluorescence, covering the entire euphotic layer.

The entire data set comprises 28 variables describing environ-

mental conditions (e.g. temperature), total and size-fractioned

primary production, local hydrodynamic conditions, resource

availability (e.g. the depth of the nitracline) (Cermeño et al.,

2008a) and several measurements of phytoplankton standing

stocks (total and size-fractionated Chla concentration, total

biomass and abundance). The methodologies used to obtain the

hydrographic structure of the water column as well as to

measure the biological and environmental variables included in

the AMT data set, are explained in detail in the Appendix S1 in

the Supporting Information (and references therein).

Table 1 List of variables included in the study, their units, the number of observations in each data set (Atlantic meridional transects
(nAMT) and the global (nGD) data sets) and a brief definition.

Variable Units nAMT nGD Definition

Lat – 98 744 Latitude

Sal – 95 – Salinity at surface

ND m 80 – Nitracline depth, at which [NO3] > 0.05 μmol l−1

T °C 95 698 Temperature, at surface

PP2–20 μm mg C m−3 h−1 70 – Primary production rate at surface, size fraction 2–20 μm (nanoplankton)

MLD m 72 744 Mixed layer depth, at which ΔT > 0.5° C

PP0.2–2 μm mg C m−3 h−1 70 – Primary production rate at surface, size fraction 0.2–2 μm (picoplankton)

Chla2–20 μm mg Chla m−3 68 – Chla concentration at surface, size fraction 2–20 μm (nanoplankton)

TotPP mg C m−3 h−1 93 – Total (all size fractions) primary production rate, at surface

TotChla mg Chla m−3 92 744 Total (all size fractions) Chla concentration, at surface

ELD m 71 – Euphotic layer depth, at which light intensity = 1% of superficial intensity

Chla0.2-2 μm mg Chla m−3 68 – Chla concentration at surface, size fraction 0.2–2 μm (picophytoplankton)

Chla≥20 μm mg Chla m−3 67 – Chla concentration at surface, size fraction ≥ 20 μm (microphytoplankton)

PP≥20 μm mg C m−3 h−1 70 – Primary production rate at surface, fraction ≥ 20 μm (microphytoplankton)

Chla≥2μmInt mg Chla m−2 62 – Chla concentration integrated in the euphotic layer, size fraction ≥ 2 μm (nano- and

microphytoplankton)

TotAbd No. of individuals 98 744 Total (all size fractions) abundance per volume of sample settled, at surface

PP≥2μmInt mg C m−2 h−1 62 – Primary production rate integrated in the euphotic layer, size fraction ≥ 2 μm (nano-

and microphytoplankton)

PP < 2μmInt mg C m−2 h−1 62 – Primary production rate integrated in the euphotic layer, size fraction < 2 μm

(picophytoplankton)

SSQS species 97 744 Number of species standardized by shareholder quorum subsampling (SQS) for q = 0.7

(70% subsampled)

PPTotInt mg C m−2 h−1 95 – Total (all size fractions) primary production rate, integrated in the euphotic layer

ChlaTotInt mg Chla m−2 97 – Total (all size-fractions) Chla concentration, integrated in the euphotic layer

Chla<2μmInt mg Chla m−2 62 – Chla concentration, integrated in the euphotic layer, size fraction < 2 μm

(picophytoplankton)

TotBio mg C m−3 98 744 Total (all size fractions) biomass, at surface

Sobs No. of species 98 744 Observed species richness, at surface

SH – 97 744 Shannon’s or standard information index of diversity

SiNext No. of species 93 744 Number of species estimated by interpolation and extrapolation methodology (iNext)

for n = 10000 individuals

PP/Chla mg C mg Chla−1 h−1 95 – Ratio PPTotInt : ChlaTotInt

PAR mol photons m−2 day−1 – 744 Photosynthetically active radiation, at surface

Nit μmol l−1 – 744 Nitrate concentration, at surface

Phosp μmol l−1 – 744 Phosphate concentration, at surface

Silic μmol l−1 – 744 Silicate concentration, at surface

Phytoplankton diversity from sampling-standardized data
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In both data sets, carbon biomass (TotBio) was estimated

from cell numbers (TotAbd) by using biovolume estimates and

empirical relationships between biovolume and cell carbon

reported by Holligan et al. (1984).

Data analyses and statistics

Standardization of the observed species richness and diversity

metrics

Our calculations are based on raw estimates of species richness

or non-standardized data (Sobs). To obtain comparable estimates

of species richness from areas with different levels of pro-

ductivity and cell densities we used two different methods of

standardization. Firstly, we applied the interpolation and

extrapolation with Hill number methodology (Chao et al.,

2014) by using the package iNext (Hsieh et al., 2014) imple-

mented in R (R Core Team, 2013). This tool uses individual-

based rarefaction analyses (Gotelli & Colwell, 2001) or

extrapolation, depending on whether the total abundance of

individuals in the sample, TotAbd, is higher or lower than the

number of individuals at which we want to compare the samples

(n), respectively. We defined SiNext as the number of species

expected when subsampling or extrapolating to n = 10,000 indi-

viduals. Secondly, we used the shareholder quorum subsampling

(SQS) method (Alroy, 2010) that estimates the expected number

of species by sampling a given coverage of the underlying species

abundance distribution. The more diverse the sample, the

higher the number of individuals that must be sampled to detect

a similar proportion of the species present in the community,

and thus a non-uniform sampling effort is needed. To define

SSQS, we sampled 70% (0.7 quorum subsampling) of the species

abundance distribution on each community after eliminating

the most dominant taxa (the species with the highest abundance

in the sample). The SQS routine was performed by using the

function sqs in R (R Core Team, 2013). In both cases, choosing

a different number of individuals or a different percentage of the

species abundance distribution did not change significantly the

results obtained from standardized data.

Finally, we also calculated the Shannon diversity index, SH,

which computes diversity as a dual variable taking into account

species richness and evenness (i.e. the equitability in the distri-

bution of abundance among species) (Hurlbert, 1971).

Objective 1: the latitudinal diversity gradient

The LDG hypothesis predicts a decline in diversity with increas-

ing latitude from the equator to the poles. To test this hypothesis

we represented the latitudinal distribution of four diversity

metrics (data from the GD) as a function of absolute latitude.

Then, we fitted ordinary least squares (OLS) linear regression

models to data.

Objective 2: the metabolic theory of ecology and biodiversity

The MTE predicts that species richness increases exponentially

with temperature (T), such that the natural logarithm of species

richness is linearly related to 1/kT (k is the Boltzmann constant),

with a slope E (activation energy) ranging between 0.60 and 0.70

eV (Brown et al., 2004). To test this hypothesis, we fitted linear

and quadratic models (first- and second-order polynomial func-

tions, respectively) to the relationship between the broad-scale

variation of phytoplankton (ln-transformed) species richness

and the inverse of temperature. The Akaike information cri-

terion (AIC) was used to select the best model (Burnham &

Anderson, 2002).

Objective 3: biomass–diversity relationship

The PDR is one of the most explored but least clear patterns in

ecology. We represented the relationship between species rich-

ness (raw and standardized) and total biomass (mg C m−3) per

sampling site. Total biomass is used here as a surrogate for

primary production, which is not available in the GD data set.

Moreover, we investigated the PDR at different regions and

seasons. To do so, we divided the GD into SubpolarN (> 49° N),

TemperateN (35 to 49° N), OligoN (20 to 34° N), Equat+Upwell

(9° S to 19° N), OligoS (10 to 34° S) and TemperateS (35 to

48° S). The SubpolarS (> 48° S) region contained only four sam-

pling stations and was discarded from the analysis. The GD was

also divided into different seasons, including Spring (March–

May), Summer (June–August), Autumn (September–

November) and Winter (December–February) for the Northern

Hemisphere and vice versa for the Southern Hemisphere. We

then fitted linear and quadratic models to data and selected the

best models according to the AIC (Burnham & Anderson, 2002).

Objective 4: single drivers of diversity

We searched for correlation between pairwise variables to quan-

tify the variation of marine phytoplankton diversity in relation

to latitude and several environmental and biological factors. We

used the function MINE (Reshef et al., 2011) in R (R Core Team,

2013), which computes the maximal information coefficient

(MIC), a measure of dependence for two-variable relationships,

such that the higher the value of MIC, the stronger the correla-

tion between the variables under consideration. The main

advantage of using this function is its capacity to identify a

broad range of relationships other than the linear correlation,

traditionally computed as the Pearson product–moment corre-

lation coefficient. The P-values or significance levels corre-

sponding to the obtained MIC scores were pre-computed for

different numbers of observations, and are available at http://

www.exploredata.net/downloads/p-value-tables. The MIC

threshold, indicating a significant correlation between the pair

of variables considered, was defined as a P-value < 0.001. This

correlation analysis enables to detect correlations among geo-

graphical and environmental variables in order to avoid redun-

dant information in the following analysis (see Objective 5).

Objective 5: multiple drivers of diversity

To test whether the patterns of marine phytoplankton diversity

(or its absence) are driven by the combined effect of multiple

T. Rodríguez-Ramos et al.
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factors acting together, we used a stepwise multiple linear regres-

sion analysis with backward selection of variables. This analysis

allows us to explore the relative performance of different com-

binations of variables as explanatory factors of species richness

(Sobs or SiNext as the dependent variable). Within each data set, we

selected only the stations for which all the variables included in

the analysis were measured (n = 51 and n = 677 stations, for

AMT and GD, respectively). Variables found to be strongly or

very strongly correlated with each other in the previous analysis

(see Appendix S2) were not allowed to be simultaneously

included in the regression analyses to avoid redundant informa-

tion. The analysis was computed in R (R Core Team, 2013) using

the function step, which calculates the AIC for a model describ-

ing the dependent variable as a function of the number of

explanatory variables (k). Then, it calculates the AIC for all

possible models derived from the initial one taken into account

k – 1 explanatory variables. The variable which most improves

the fit (giving rise to the lowest AIC) with respect to the initial

model is removed from the subset of potentially explanatory

variables. This routine is repeated until the fit cannot be further

improved by removing any of the remaining variables. The

method uses a maximum of k = 7 variables per model, so we

selected different subsets of seven variables until we found the

best model. Then, we used the function moran.test implemented

in the package spdep in R (R Core Team, 2013) to check if the

residuals from the multiple linear regression models were spa-

tially autocorrelated.

RESULTS

Patterns in species occurrence and abundance

In the GD, 17% of the species were very infrequent (found in

only one or two samples), 13% were infrequent (present in less

than 10% of the samples) and only 0.6% were widespread

(found in at least half of the samples, distributed in both hemi-

spheres); no cosmopolitan species (present in more than 90% of

the samples) were found. In the AMTs, 33% of the species were

very infrequent, 41% were infrequent, 5% were widespread

and < 1% were cosmopolitan. However, in both data sets, the

occurrence of a species, defined as the number of samples in

which the species is present, was correlated positively with its

total abundance in the corresponding data set (Appendix S3).

This result suggests that infrequent and very infrequent species,

typically present in very low abundance, could be systematically

undersampled owing to their low population densities. Hence,

in addition to raw species richness (Sobs), we included three

additional descriptors of diversity in our analyses: SiNext, SSQS and

SH (see Methods and Table 1).

Objective 1: LDG

The hotspots of species richness found at intermediate latitudes

largely vanished after standardization for sampling effort

(Fig. 1). All the diversity metrics showed a slight tendency to

decrease linearly with increasing latitude. However, the coeffi-

cients of determination (R2) were very low (ranging from 0.005

for SH to 0.07 for SiNext), suggesting that latitudinal gradients had

little power to account for the patterns of nano- and

microphytoplankton species richness in the ocean.

Objective 2: MTE

The shape of the temperature–species richness relationship was

dependent on the expression of species richness used (Fig. 2).

The parameters of the models fitted to data are available in

Table 2. For Sobs and SiNext, the AIC showed that this relationship

was best described by a curvilinear relationship. On the

Figure 1 Global latitudinal
distribution of superficial nano- and
microphytoplankton species richness and
diversity. Solid lines represent the
ordinary least squares regression fitted to
diversity data as a function of absolute
latitude (Lat). Sobs, observed species
richness (Sobs = 39.65 – 14.10 × Lat,
P < 0.0001, R2 = 0.028); SiNext, species
richness standardized by Chao’s
method for n = 10,000 individuals
(SiNext = 44.47 – 0.26 × Lat, P < 0.0001,
R2 = 0.07); SSQS, species richness
standardized by Alroy’s SQS method
after sampling 70% of the abundance
distribution, q = 0.7 (SSQS = 7.08 –
0.03 × Lat, P < 0.0001, R2 = 0.031);
and SH, Shannon diversity index
(SH = 1.65 – 0.003 * Lat, P < 0.05,
R2 = 0.005).

Phytoplankton diversity from sampling-standardized data
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contrary, SSQS declined linearly with decreasing temperature as

predicted by the MTE. However, in all cases, temperature

explained only a minor percentage of the variability in species

richness. Moreover, the regression slopes (absolute values) of the

relationship between ln-transformed species richness and tem-

perature were much lower (ranging from 0.13 for SSQS to 0.19 for

SiNext) than the range predicted by the MTE, regardless of the

expression used for species richness (Table 2).

Objective 3: PDR

The global relationship between Sobs and community biomass

(Fig. 3, upper panel) was best described by a quadratic function

(see Appendix S4), with diversity peaking at intermediate levels

of community biomass. Biomass explained c. 22% of the vari-

ability in species richness (Sobs). Although this unimodal pattern

was consistent for all the expressions of diversity, the coefficient

of determination was very low after standardizing species rich-

ness by sampling effort or when using the Shannon diversity

index (i.e. biomass explained only c. 9% of variability for SiNext, c.

4% for SSQS and c. 3% for SH).

Our analysis showed poor relationships across geographical

regions and seasons. Only in the northern oligotrophic region

(OligoN) and in the low-latitude region (Equat+Upwell) did the

biomass explain > 50% and c. 40% of variability in Sobs, respec-

tively (Fig. 3). Again, the patterns observed with raw data mostly

disappeared or changed after standardizing species richness by

sampling effort. For the different seasons (Fig. 4), raw species

richness exhibited a ‘hump-shaped’ relationship with biomass.

This relationship vanished or turned linear and negative when

standardizing by sampling effort, except for the summer subset

(see Appendices S4 & S5 for further details on linear and quad-

ratic models fitted to data, for different regions and seasons,

respectively).

Objective 4: single drivers of diversity

We performed analyses of correlation between pairwise vari-

ables. The results are summarized in correlation (semi-) matri-

ces (Appendix S2 for the AMT (A) and GD (B) data sets,

respectively). Significant correlations are categorized into differ-

ent classes of ‘strength’ (weak, moderate, strong and very

strong), defined as ranges of maximum information coefficient

(MIC) scores (see the legends and figures in Appendix S2).

AMT data set

Among all the diversity expressions, we found only a significant

correlation with latitude for SSQS (Appendix S2). Likewise, none

of the environmental variables which were strongly correlated

with latitude (Sal, ND, T, MLD or ELD) were significantly cor-

related with any of the four expression of diversity. Temperature

was not correlated with any diversity metric, reinforcing our

results about the minor role of temperature on species richness

distribution. TotChla was not correlated with any of the diver-

sity metrics (Appendix S2).

GD data set

Environmental and resource-related variables showed the

strongest correlation with latitude. TotAbd, TotChla and TotBio

showed a significant correlation with increasing latitude. The

estimates of species richness showed different patterns: Sobs was

significantly (although weakly, see Appendix S2) correlated with

all the variables included in the analysis. SiNext, SSQS, and SH were

significantly (although weakly, see Appendix S2) correlated with

latitude.

In summary, for both the AMT and GD data sets, none of

the variables included in the correlation analysis were strongly

Figure 2 Relationship between temperature and species richness.
The natural logarithm of species richness (a) observed (Sobs) and
standardized by sampling effort (b) by Chao’s method for
n = 10,000 individuals (SiNext) and (c) by Alroy’s SQS method for
q = 0.7 (70% resampled) (SSQS) is expressed as a function of the
inverse, absolute temperature at the surface, 1/kT (k, Boltzmann’s
constant), using data from the global data set (GD, n = 698). The
parameters of linear (solid line) and quadratic (dashed line)
functions fitted to the data are available in Table 2. The best fitted
model, with the lowest value of the Akaike information criterion,
is highlighted with a thicker line.

T. Rodríguez-Ramos et al.
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correlated with Sobs, SiNext, SSQS or SH. Consequently, the distribu-

tion of nano- and microphytoplankton species richness in the

oceans cannot be explained by a single controlling factor.

Objective 5: multiple determinants of diversity

A stepwise multiple linear regression analysis with backward

selection of variables was implemented as an attempt to fore-

casting the patterns in Sobs or SiNext as a function of biotic and

abiotic factors. For the AMT data set, the analysis showed that a

model combining three variables (T, TotBio and TotPP)

explained 34% of the variability in Sobs along the Atlantic Ocean,

while for SiNext it decreased to 21% and temperature was dis-

carded as a driver of species richness (see Appendix S6 for

further details on model fitting). For the GD, with a smaller

number of potential independent factors but a higher number

of observations per variable, a model combining four drivers

(T and TotBio, as well as incident PAR and MLD; see Table 1

for a definition of the terms) was able to explain only 17% of

the variability in Sobs and 18% of the variability in SiNext

(Appendix S6).We calculated Moran’s I statistic for each

model’s residuals (the number of species observed minus the

number of species predicted by the model) to test for spatial

autocorrelation. In both cases the result was not significant at

the α = 0.05 level (P > 0.05 in both cases and for both data sets),

which means that we cannot reject the null hypothesis of a

random distribution of the residuals and thus we can discard

spatial autocorrelation in our data (Dormann et al., 2007).

DISCUSSION

The latitudinal diversity gradient

We have found a weak latitudinal diversity gradient regardless of

the diversity metric used. The hotspots of species richness that

are commonly observed at intermediate latitudes largely van-

ished after standardizing the number of species by sampling

effort. The observation of a weak latitudinal diversity gradient is

in accordance with previous findings for marine planktonic

microorganisms (Hillebrand & Azovsky, 2001; Cermeño et al.,

2008b) and compatible with the bipolar distribution of some

specific marine bacteria (Sul et al., 2013) and a cyst-forming

dinoflagellate species (Montresor et al., 2003). As suggested by

Pedrós-Alió (2006), everything would be likely to be everywhere

if rare taxa forming the seed bank of species were detectable by

the existing methods.

Alternatively, some authors have proposed the existence of a

strong latitudinal diversity pattern for marine microorganisms.

For instance, Pommier et al. (2007) and Fuhrman et al. (2008)

found that the species richness of marine bacterioplankton was

significantly correlated with latitude and temperature. However,

these results might be biased by methodological issues such as a

limited sampling coverage and systematic undersampling. In the

first case, the analysis is based on nine sampling sites spatially

separated by wide distances, and thus the results are not strictly

representative of a global pattern. In the second study, the

authors report a substantial proportion of unexplained vari-

ation in diversity, limiting potential interpretations about the

nature of a LDG for bacterioplankton. As stated above, these

studies were potentially biased by differences in sampling effort

and thus disparate probabilities of detection of rare species

(Rodríguez-Ramos et al., 2014). Using a global ocean ecosystem

model, Barton et al. (2010) predict a decrease in phytoplankton

diversity with increasing latitude and identify hotspots of diver-

sity at tropical and subtropical latitudes. However, the robust-

ness of their model results has been questioned, with some

arguing that minor deviations from their assumption of neu-

trality would result in very different predictions (Huisman,

2010). Recently, Stomp et al. (2011) reported on a LDG for

freshwater phytoplankton despite their data set only covering a

narrow latitudinal range. However, the patterns of microbial

diversity might obey different rules in freshwater ecosystems,

Table 2 Parameters of the linear and quadratic models fitted to the relationship between the natural logarithm of species richness
(observed, Sobs, or standardized by sampling effort by Chao’s method for n = 10,000 individuals (SiNext) and by Alroy’s SQS method for
q = 0.7 (70% resampled) SSQS) and the inverse temperature (independent variable).

Dependent variable Model Param. 1 Param. 2 Param. 3 R2 AIC P-value

ln(Sobs) L 10.0 (± 0.7) −0.16 (± 0.02) 0.104 693.7 < 0.0001

Q −121.5 (± 29.0) 6.41 (± 1.43) −0.082 (± 0.02) 0.129 674.9 < 0.0001

ln(SiNext) L 11.0 (± 0.8) −0.19 (± 0.02) 0.12 780.8 < 0.0001

Q −37.1 (± 30.9) 2.22 (± 1.55) −0.03 (± 0.02) 0.12 780.3 < 0.0001

ln(SSQS) L 7.0 (± 1.0) −0.13 (± 0.02) 0.04 1101 < 0.0001

Q 34.8 (± 39.0) −1.53 (± 1.95) 0.02 (± 0.71) 0.039 1102.8 < 0.0001

The P-value indicates the level of significance of the fit. R2 is the coefficient of determination. AIC, Akaike information criterion for each fitted model.
The model with lowest AIC (in bold) was the best fitted to data.
Models:
L (linear): ln(S) = Param. 1 (± SE) + Param. 2 (± SE) × (1/kT)
where Param.1 = intercept; Param.2 = slope.
Q (quadratic): ln(S) = Param.1 (± SE) + Param. 2 (± SE) × (1/kT) + Param. 3 (± SE) × (1/kT)2

where Param.1 = free term; Param.2 = linear term; Param.3 = quadratic term; k (Boltzmann constant) = 1.38 × 10−23 m2 kg s−2 K−1.

Phytoplankton diversity from sampling-standardized data
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where species populations are strongly limited by dispersal. This

reduced habitat connectivity would have increased the probabil-

ity of geographical isolation and hence the rate of diversification

under favourable conditions for phytoplankton growth.

Testing the prediction of the MTE

The relationship between SSQS and temperature was best

described by a linear regression model, while the relationships

between Sobs and SiNext with temperature were best described by

a quadratic model, in agreement with previous results for

marine planktonic foraminifera (Rutherford et al., 1999) and

several terrestrial taxa (Algar et al., 2007). In all cases, the

inverse of temperature explained only a low percentage of vari-

ability in species richness. Besides, the slopes of the linear

regressions were significantly lower than those predicted by the

MTE (Brown et al., 2004) (Table 2). These results argue against

an exponential association between temperature and species

richness as predicted by the MTE, and add marine phytoplank-

ton to the list of taxonomic guilds that do not support

Figure 3 Productivity–diversity
relationship at different spatial scales.
Superficial species richness (a) observed
(Sobs) and standardized by sampling
effort (b) by Chao’s method for
n = 10,000 individuals (SiNext) and (c) by
Alroy’s SQS method for q = 0.7 (70%
resampled) (SSQS) is expressed as a
function of total biomass. Data
correspond to the global data set (GD,
n = 744). Solid and dashed lines
represent linear and quadratic functions
fitted to data, respectively. Only
significant fits are shown. The
parameters describing each fitted model
are shown in Appendix S4. The best
fitted model, with the lowest value of
the Akaike information criterion, is
highlighted with a thicker line.
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this relationship as a cause of variability in species richness

(Hawkins et al., 2007).

Traditional sampling protocols severely underestimate the

number of species with low population densities

(Rodríguez-Ramos et al., 2014). Hence, the number of species

detected is expected to be higher where specific populations

attain higher cell densities (i.e. in productive ecosystems). This

assertion is supported by the significant positive relationship

found between the number of observations per species and its

total abundance per data set (Appendix S3). Recently, Marañón

et al. (2014) found that resource limitation attenuates the tem-

perature dependence of metabolic rates, and showed that phy-

toplankton growth rate (per day) is adjusted by changes in

resource supply, with seawater temperature playing only a minor

role. Their results could imply (omitting the effect of processes

of biomass loss) a similar lack of dependence between the

number of species and temperature, in agreement with our

conclusions.

The productivity–diversity pattern

We performed an extensive analysis to investigate the shape and

nature of the PDR over regional and seasonal scales. Globally,

the pattern resulting from raw data supported, although with a

large scatter of data, the long-standing idea of a hump-shaped

relationship between diversity and biomass (Irigoien et al.,

2004). However, changes in community biomass were unable to

explain a significant amount of variability in Sobs, SiNext, SSQS or

SH, regardless of the geographical region (Appendix S4) or sea-

sonal period (Appendix S5). These results support the conclu-

sions of Adler et al. (2011) and Cermeño et al. (2013), who

suggested that diversity and biomass (or primary production) in

communities of terrestrial plants and marine phytoplankton are

not linked mechanistically.

Factors explaining diversity patterns

The pairwise correlation analysis confirmed the absence of a

relationship between diversity and primary production or tem-

perature, and revealed that no other single environmental or

biological variable was able to explain per se a significant

amount of variability in species richness. We thus used a

stepwise multiple regression analysis to test for the combined

effect of several factors upon diversity patterns, a method which

has previously been satisfactorily used for a variety of organ-

isms. For example, freshwater phytoplankton diversity is signifi-

cantly affected by temperature, Chla concentration and lake area

and depth, explaining more than 50% of the variability in

species richness (Stomp et al., 2011). Recently, Azovsky & Mazei

(2013) determined that the species richness of marine benthic

ciliates was highly dependent on salinity and investigation

effort, which together explained about 90% of variability in

species richness. In the present study, however, the multiple-

drivers model (including standing stock descriptors and tem-

perature but no other environmental variables) explained only a

relatively low percentage of variability in species richness, both

for observed and standardized estimates (Appendix S6). Our

results suggest that environmental regression is a poor method

Figure 4 Productivity–diversity
relationships for different seasons.
Superficial species richness (a) observed
(Sobs) and standardized by sampling
effort (b) by Chao’s method for
n = 10,000 individuals (SiNext) and (c) by
Alroy’s SQS method for q = 0.7 (70%
resampled) (SSQS) is expressed as a
function of total biomass. Data
correspond to the global data set (GD,
n = 744). Solid and dashed lines
represent the fitted linear and quadratic
models, respectively. Only significant fits
are shown. The parameters describing
each fitted model are shown in
Appendix S5. The best fitted model,
with the lowest value of the Akaike
information criterion, is highlighted with
a thicker line.
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for the prediction of diversity patterns for marine nano- and

microphytoplankton, although some previous studies have

shown its utility. For instance, Ladau et al. (2013) used a species

distribution modelling approach to generate global maps of

marine bacterial diversity by regressing observations of diversity

on environmental conditions and then projecting the regression

into geographical space. They found a seasonal pattern in the

latitudinal distribution of marine bacterial diversity, with peaks

at high latitudes in winter. However, this result could be partially

influenced by the observation that species are easily detected

during that season because communities exhibit typically more

even distributions (Caporaso et al., 2012).

We suggest two potential, non-exclusive explanations for

these results. First, conventional sampling methods systemati-

cally overlook the number of rare species (Rodríguez-Ramos

et al., 2014), which limits our ability to delineate the patterns of

species richness and the underlying mechanisms (Cermeño

et al., 2013). Second, niche and neutral mechanisms may act

simultaneously to adjust the taxonomic composition of local

communities. In this scenario, the identity of dominant species

would be determined primarily by local environmental selec-

tion, while neutral processes such as individuals’ dispersal and

demographic stochasticity would account for the large pool of

rare taxa present in these communities.

The results presented here suggest that environmental condi-

tions, seawater temperature and ecosystem productivity are

poor predictors of phytoplankton species richness variability in

the world ocean. Our analyses are based on morphologically

defined species, easily recognized under the microscope, but

obviate small-sized picophytoplankton species which account

for much of the community biomass and primary production in

low-latitude open-ocean regions. We have shown for variability

of species richness large-sized species may be controlled to first

order by broad-scale processes such as the dispersal of individ-

uals. Assuming that these mechanisms also influence the distri-

bution of small picophytoplankton taxonomic units, we would

expect similar diversity patterns to those observed for the nano-

and microphytoplankton groups.

Conclusions

Marine nano- and microphytoplankton exhibit a weak latitudi-

nal diversity gradient. Temperature and productivity were

unable to explain the variability in species richness across eco-

systems. We conclude that the use of non-uniform sampling

effort along productivity gradients distorted the patterns of

species richness reported previously. Sampling biases and insuf-

ficient data are key issues affecting the estimates of species rich-

ness and previously reported patterns of microbial plankton

biogeography.

Our results agree with the view that the patterns of species

richness in the microbial world differ from those of

macroorganisms (Hillebrand & Azovsky, 2001; Finlay, 2002;

Fenchel & Finlay, 2004). Emergent hypotheses (Holt, 2006;

Vergnon et al., 2009; Segura et al., 2011) suggest that neutrality

can arise from ecological and evolutionary interactions among

species, giving rise to groups of ecologically similar coexisting

species. According to our results, niche- and neutral-based pro-

cesses might not be mutually exclusive but could be concurrent

drivers of diversity patterns and community composition.

Passive dispersal with marine currents gives rise to a seed bank

of species, from which only a few species are environmentally

selected over short time-scales.

New surveys applying increased sampling efforts and stand-

ardization techniques are required in order to obtain meaning-

ful and comparable estimates of phytoplankton species richness

and community composition. These are key objectives for a

better understanding of the spatial and temporal distribution of

microbial plankton species, and the linkage between community

structure and ecosystem functioning.
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