Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production

Michael J. Behrenfeld1,*, Emilio Marañón2, David A. Siegel3, Stanford B. Hooker1

1National Aeronautics and Space Administration, Goddard Space Flight Center, Code 971, Building 33, Greenbelt, Maryland 20771, USA
2Departamento de Ecología y Biología Animal, Universidad de Vigo, 36200 Vigo, Spain
3Institute for Computational Earth System Science, University of California Santa Barbara, Santa Barbara, California 93106-3060, USA

ABSTRACT: Availability of remotely sensed phytoplankton biomass fields has greatly advanced primary production modeling efforts. However, conversion of near-surface chlorophyll concentrations to carbon fixation rates has been hindered by uncertainties in modeling light-saturated photosynthesis ($P_{b \text{max}}$). Here, we introduce a physiologically-based model for $P_{b \text{max}}$ that focuses on the effects of photoacclimation and nutrient limitation on relative changes in cellular chlorophyll and CO$_2$ fixation capacities. This ‘PhotoAcc’ model describes $P_{b \text{max}}$ as a function of light level at the bottom of the mixed layer or at the depth of interest below the mixed layer. Nutrient status is assessed from the relationship between mixed layer and nutricline depths. Temperature is assumed to have no direct influence on $P_{b \text{max}}$ above 5°C. The PhotoAcc model was parameterized using photosynthesis-irradiance observations made from extended transects across the Atlantic Ocean. Model performance was validated independently using time-series observations from the Sargasso Sea. The PhotoAcc model accounted for 70 to 80% of the variance in light-saturated photosynthesis. Previously described temperature-dependent models did not account for a significant fraction of the variance in $P_{b \text{max}}$ for our test data sets.

KEY WORDS: Photosynthesis · Modeling · Primary production

INTRODUCTION

Photosynthesis is a fundamental process of nearly all known ecosystems, such that the level of photoautotrophic carbon fixation supported by a given environment broadly dictates the local biomass of subsequent trophic levels and the biogeochemical exchange of elements between systems. Models of biospheric primary production have been greatly aided by global-scale satellite observations (Field et al. 1998), but conversion of measured plant biomass to net photosynthesis has remained problematic. Whereas terrestrial productivity models suffer from a lack of observational data for parameterization and testing (Field et al. 1998), high-sensitivity measurements of net primary production in aquatic systems have been routine since the introduction of the 14C method by Steemann Nielsen (1952).

Analyses of vertical profiles of phytoplankton photosynthesis revealed early on that, when normalized to depth-specific chlorophyll concentrations, primary production can be modeled to first order simply as a function of subsurface irradiance (Ryther 1956, Ryther & Yentsch 1957, Talling 1957). A variety of analytical expressions have consequently been developed de-
scribing this relationship between vertical light attenuation and chlorophyll-normalized carbon fixation (reviewed by Platt & Sathyendranath 1993, Behrenfeld & Falkowski 1997b). Such models can account for most of the observed variance in depth-integrated photosynthesis (ΣPP), particularly when measurements encompass a wide phytoplankton biomass range, provided model input includes measured values for: (1) the vertical distribution of chlorophyll, (2) the downwelling attenuation coefficient (K_d) for photosynthetically active radiation (PAR), and (3) the maximum carbon fixation rate per unit of chlorophyll ($P_{b,\text{opt}}$) (Behrenfeld & Falkowski 1997a,b).

For over 40 yr, developments in phytoplankton primary production models have focused on refining characterizations of the above 3 critical water-column features, with clearly the greatest achievements realized in the description of the underwater light field (e.g. Platt & Sathyendranath 1988, Morel 1991, Antoine et al. 1996). Progress has also been made in predicting vertical profiles of chlorophyll (Platt & Sathyendranath 1988, Morel & Berthom 1989), but models of $P_{b,\text{opt}}$ have remained rudimentary and inconsistent (Behrenfeld & Falkowski 1997b). The importance of accurate $P_{b,\text{opt}}$ estimates cannot be overstated, especially when model performance is evaluated by comparison with point-source field observations. For globally representative data sets, phytoplankton biomass alone accounts for <40% of ΣPP variability, while inclusion of measured $P_{b,\text{opt}}$ values can account for >80% of the variance in ΣPP (Balch & Byrne 1994, Behrenfeld & Falkowski 1997a). In oligotrophic regions where the range in chlorophyll concentration is further constrained, accurate estimates of $P_{b,\text{opt}}$ are even more critical (Banse & Yong 1990, Siegel et al. 2000).

The function of $P_{b,\text{opt}}$ models is to capture spatial and temporal changes in assimilation efficiencies (i.e. carbon fixed per unit of chlorophyll) resulting from physiological acclimation to environmental variability. Currently, the 2 principal approaches for estimating $P_{b,\text{opt}}$ in regional- to global-scale models are: (1) to assign fixed, climatological values to biogeographical provinces (Longhurst 1995, Longhurst et al. 1995), and (2) to define predictive relationships between $P_{b,\text{opt}}$ and 1 or more environmental variables (e.g. temperature, nutrient concentration) (Megard 1972, Balch et al. 1992, Antoine et al. 1996, Behrenfeld & Falkowski 1997a). Both techniques have advantages, but differ in their intended application. For example, the first approach furnishes broad-scale average values for designated regions and is not intended to accurately reproduce the much finer scale physiological variability in 14C-uptake rates corresponding to a given day, depth and location. As for the second approach, an effective model should, ideally, provide $P_{b,\text{opt}}$ estimates comparable at this point-source scale of field measurements, but a successful model of this genre has not yet been described.

Here we introduce a model, belonging to this second category, that captures $P_{b,\text{opt}}$ variability in natural phytoplankton assemblages. The model largely focuses on changes in $P_{b,\text{opt}}$ resulting from photoacclimation and is thus referred to as the ‘PhotoAcc Model’, although a nutrient-dependence is also prescribed. In the following section, we describe the conceptual basis and underlying equations of the PhotoAcc model, the field data used for model parameterization and testing, and our approach to assessing nutrient status and photoacclimation irradiances. Model limitations, directions for expansion, and potential avenues for global implementation are addressed in the section ‘Discussion’.

METHODS

The PhotoAcc model is intended to provide estimates of both $P_{b,\text{opt}}$ and $P_{b,\text{max}}$ that are robust to variations in environmental conditions and taxonomic composition. $P_{b,\text{opt}}$ is measured under ambient light conditions during ~6 to 24 h in situ or simulated in situ incubations, and is defined as the maximum chlorophyll-normalized carbon fixation in a water column (the superscript 'b' denotes normalization to chlorophyll) divided by the incubation light period (Wright 1959, Behrenfeld & Falkowski 1997a). Natural fluctuations in sunlight cause photosynthesis to vary during such incubations, particularly in light-limited samples deep within the water column. $P_{b,\text{opt}}$, however, is generally observed near the surface where light levels are sufficient to maintain photosynthesis near the light-saturated rate, $P_{b,\text{max}}$. Thus, unless photoinhibition is excessive or ambient PAR is very low, modeling $P_{b,\text{opt}}$ is synonymous with modeling near-surface $P_{b,\text{max}}$.

The longer-term incubations described above treat the water column as a compound photosynthetic unit and yield a single $P_{b,\text{opt}}$ value for each vertical profile. In contrast, short-term (~0.5 to 2 h) photosynthesis-irradiance (PI) measurements provide unique relationships between light and carbon fixation for each population sampled within a water column. This technique involves exposing phytoplankton from a given depth to a range of constant light intensities. PI measurements provide critical information on depth-dependent changes in $P_{b,\text{max}}$.

PhotoAcc model. The light-saturated rate of photosynthesis is constrained by the capacity of the Calvin cycle reactions (P_{max}), which fix CO$_2$ into carbohydrates (Stitt 1986, Sukenik et al. 1987, Orellana & Perry...
If chlorophyll (chl) concentration is assumed proportional to light absorption, then $P_{\text{b max}}$ is the ratio of the Calvin cycle capacity to light-harvesting (i.e. $P_{\text{b max}} = P_{\text{max}} \times \text{chl}^{-1}$). Light absorption and electron transport by the photosynthetic light reactions function primarily to supply ATP and NADPH to the Calvin cycle. Thus, parallel changes in chlorophyll and the Calvin cycle can occur without a change in $P_{\text{b max}}$. Variations in $P_{\text{b max}}$ result when acclimation to a new growth condition requires a shift in the balance between light harvesting and carbon fixation. Therefore, the essential requirement for an effective $P_{\text{b max}}$ model is a description of how specific environmental factors cause P_{max} and chlorophyll to change relative to each other.

The PhotoAcc model estimates $P_{\text{b max}}$ by describing separate, light-dependent relationships for P_{max} and chlorophyll for 3 environmental conditions: (1) nutrient-sufficient growth in the mixed layer, (2) nutrient-sufficient growth below the mixed layer, and (3) nutrient-depleted growth above the nutricline. The challenging aspect of this approach is that the underlying relationships are not resolved in the field and are rarely measured in the laboratory. In the field, P_{max} and chlorophyll are typically measured per unit volume of water, so changes resulting from physiological acclimation cannot be distinguished from changes due to variations in cell abundance. However, since variability in $P_{\text{b max}}$ is dependent on relative changes in P_{max} and chlorophyll, parameterization of the PhotoAcc model can be achieved using a qualitative light-chlorophyll relationship from laboratory photoacclimation studies and field P_{b} data.

Laboratory photoacclimation experiments suggest that phytoplankton exhibit a reasonably conserved response to changes in growth irradiance (I_g). To illustrate, we assembled chlorophyll-irradiance relationships for 23 phytoplankton species from 23 studies described in the literature (Fig. 1). Reported irradiance values were converted to units of mol quanta m$^{-2}$ h$^{-1}$ following Richardson et al. (1983). Data from a given study were binned according to species, photoperiod, and growth temperature, and then each bin was divided by a scalar to yield normalized chlorophyll concentrations (chl_{norm}) (see Fig. 1 legend). For the 342 observations in our data set, the relationship between chl_{norm} and I_g was described by:

$$\text{chl}_{\text{norm}} = 0.036 + 0.2 \times e^{-1.1 \times I_g} \quad (1)$$

Eq. (1) expresses cellular chlorophyll as a function of light (Fig. 1). If Calvin cycle capacities (cell$^{-1}$) had been simultaneously measured, then the parameters in Eq. (1) could be adjusted to describe light-dependent changes in chlorophyll relative to P_{max} (i.e. chl_{rel}). Unfortunately, P_{max} measurements were not made.
However, if P_{max} exhibits a monotonic dependence on I_g, then chl$_{\text{rel}}$ should still follow the relationship:

$$\text{chl}_{\text{rel}} = a + b \times e^{-c \times I_g} \quad (2)$$

For the PhotoAcc model, we assumed that Eq. (2) provides an adequate description of chl$_{\text{rel}}$. We then derived values for the parameters (a, b, c) using field measurements of P_{max}.

For mixed layer, nutrient-sufficient phytoplankton (Condition 1), the PhotoAcc model attributes variability in P_{max} solely to changes in I_g. Since chlorophyll is expressed relative to the Calvin cycle capacity, P_{max} was simply assigned an irradiance-independent value of 1 mg C m$^{-3}$ h$^{-1}$ (Fig. 2a). Light-dependent changes in chl$_{\text{rel}}$ were then determined by fitting Eq. (2) to the inverse of measured P_{max} as a function of I_g (i.e. chl$_{\text{rel}} = P_{\text{max}} \times P_{\text{max}}^{-1} = 1/P_{\text{max}}$), where I_g was taken as the average daily PAR at the bottom of the active mixed layer.

For nutrient-sufficient phytoplankton below the mixed layer (Condition 2), I_g was calculated as the average daily PAR at the depth of interest and chl$_{\text{rel}}$ was assigned the same relationship with I_g as determined for the mixed layer. Relative to Condition 1, P_{max} was assumed to decrease at very low light below the mixed layer (Fig. 2a: inset) because a high Calvin cycle capacity is unnecessary in chronically light-limited phytoplankton deep within a stratified water column (Geider et al. 1986, Orellana & Perry 1992). This light-dependent change in P_{max} was described by:

$$P_{\text{max}} = d + f \times (1 - h^{a \times I_g}) \quad (3)$$

where n has inverse units of I_g to yield a dimensionless exponent. Parameter values (d, f, h, n) were derived by fitting Eq. (3) to the product of chl$_{\text{rel}}$ and measured P_{max} as a function of I_g.

Few laboratory studies have specifically investigated nutrient-dependent changes in the relative abundance of light harvesting and Calvin cycle components. We assumed that P_{max} would be lower under nutrient-depleted conditions because associated increases in the energetic cost of extracting nutrients from the environment would favor the use of light reaction products for ATP generation rather than carbon fixation. This shift in the balance between light harvesting and carbon fixation was effectuated in the PhotoAcc model by assuming the same light-chl$_{\text{rel}}$ relationship as under nutrient-sufficient conditions, but a lower, light-independent value for P_{max} in the mixed layer (Fig. 2b). This nutrient-depleted P_{max} value was determined by multiplying measured P_{max} and calculated chl$_{\text{rel}}$ values and taking the median of these products. Between the mixed layer and nutricline, P_{max} was further reduced as a function of light following the light-dependent relationship derived for nutrient-sufficient cells below the mixed layer (Fig. 2b: inset). Below the nutricline, P_{max} was estimated using the nutrient-sufficient equations (Fig. 2a).

Parameterizing the PhotoAcc model with field data required an environmental index of nutrient status and an assessment of surface mixing depths. Our approach to these issues and the field data employed are detailed in the 3 subsections that follow the brief model summary below.

To recapitulate: the PhotoAcc model describes light-dependent changes in chlorophyll and P_{max} for 3 environmental conditions (Fig. 2). For each condition, changes in P_{max} and chl$_{\text{rel}}$ are expressed relative to the P_{max} value of 1 mg C m$^{-3}$ h$^{-1}$ assigned to nutrient-sufficient, mixed-layer phytoplankton. Chl$_{\text{rel}}$ is assumed to vary with light in a similar manner as chlorophyll per cell, which has been repeatedly measured in the laboratory (Fig. 1). Calvin cycle capacities are not directly determined in the field, so the model is parameterized in a stepwise manner using measurements of P_{max}. The first step is to fit the light-chl$_{\text{rel}}$ relationship (Eq. 2) to inverse P_{max} values observed in the mixed layer under nutrient-sufficient conditions. Applying this same light-chl$_{\text{rel}}$ relationship to the other 2 conditions allows the remaining P_{max} equations to be solved. Specifically, the light-dependent change in P_{max} below the mixed layer (Fig. 2; insets) is determined by fitting Eq. (3) to the product of chl$_{\text{rel}}$ and measured P_{max} values from below the mixed layer. The lower P_{max} value for nutrient-depleted conditions (Fig. 2b) is determined as the mean of the products, chl$_{\text{rel}} \times P_{\text{max}}$ (where P_{max} values are measured in nutrient-depleted waters).

Field data.

The PhotoAcc model was parameterized using Atlantic Meridional Transect (AMT) data. Each AMT field campaign involves a suite of complimentary physical, chemical, and biological observations from a diversity of oceanographic regimes. We employed results from 2 of these program transects, AMT-2 (22 April to 22 May 1996) and AMT-3 (16 September to 25 October 1996) each spanning an 11,000 km region between the United Kingdom and the Falkland Islands. In addition to encompassing 5 of the major biogeochemical provinces defined by Longhurst et al. (1995), these AMT studies were also ideal for model parameterization because they exhibited significantly divergent latitudinal patterns in P_{max} despite being nearly identical geographical transects (Marañón & Holligan 1999, Marañón et al. 2000).

Protocols employed for optical and biological measurements during AMT-2 and AMT-3 have been previously reported (Robins et al. 1996, Marañón & Holligan 1999, Marañón et al. 2000). Optical measurements were conducted using the SeaWiFs Optical Profiling System (SeaOPS) with a set of 7-channel light sensors (Robins et al. 1996). Optical measurements with the SeaOPS have a characteristic uncertainty of 3.4%,...
with 1.5% of this from ship-shadow contamination (Hooker & Maritorena 2000). Photosynthesis-irradiance measurements were conducted on samples collected at each station from 7 m, near the base of the mixed layer, and near the chlorophyll maximum (Marañón & Holligan 1999). This sampling strategy provided $P_{b_{\text{max}}}$ values from within and below the mixed layer. Data collected between 40 and 49° N during AMT-2 (3 stations) were not used in our analysis because of inconsistencies in parallel chlorophyll measurements (specifically, the 2 records had similar patterns, but were juxtaposed by 1 station), nor did we use the AMT-3 data from 60 m at 38° S because of a large discrepancy between chlorophyll concentration and spectral attenuation coefficients (K_{d}).

Performance of the PhotoAcc model was additionally tested using a 6 yr record of light and primary production from the US-JGOFS Bermuda Atlantic Time Series (BATS) program and Bermuda BioOptics Program (BBOP). BATS and BBOP measurement protocols have been described previously (Knap et al. 1993, Michaels & Knap 1996, Siegel et al. 1995a,b, 2000). Chlorophyll-normalized rates of primary production (P_b) were based on light-dark in situ 14C-uptake measurements conducted from sunrise to sunset and HPLC determinations of phytoplankton pigment. Each vertical profile of P_b was visually inspected to extract the appropriate value for P_b^{opt}. With few exceptions, P_b^{opt} was taken as the P_b value measured at 20 m. Above this depth, a slight photoinhibitory effect was common, while P_b values below 20 m generally decreased due to longer periods of light-limited photosynthesis. On a few occasions, the P_b value at 20 m greatly exceeded values immediately above and below this depth, in which case the second highest P_b value was taken as P_b^{opt}. Mixed-layer primary production is phosphate-limited at the BATS site during the summer months (Michaels et al. 1994, 1996).

Nutrient limitation index. An environmental index was required to discriminate between nutrient-sufficient and nutrient-depleted water masses. The dissolved concentration of nutrients does not provide an effective index because, over a majority of the open ocean, the daily allocation of resources available for growth is largely determined by food-web recycling rates. We therefore used the relationship between the physical mixed layer depth (Z_M) and the nitracline depth (Z_N) as a first-order index of nutrient status. The basis for this index is that when physical forcing (e.g. a storm) deepens the mixed layer such that mixing penetrates the nutricline, the upper water column becomes ‘charged’ with nutrients and either a close correspondence exists between Z_M and Z_N or nutrients are elevated throughout the water column. When stratification follows, the mixed layer shoals, and Z_M separates from Z_N. Simultaneously, recycling inefficiencies export nutrients out of the active biological pool and into particulate refractory and deep-ocean pools (Eppley & Peterson 1979). If the time scale of these 2 events is similar, then the separation of Z_N and Z_M should function as a correlate to increasing nutrient stress.
Clearly, conditions will exist when \(Z_N > Z_M \), yet recycling is sufficient to transiently maintain phytoplankton in a nutrient-sufficient physiological state. The relationship between \(Z_N \) and \(Z_M \) was thus treated as a first-order index to separate nutrient-sufficient from nutrient-depleted data. For this analysis, \(Z_M \) was evaluated from vertical profiles of density (\(\sigma_t \)) and \(Z_N \) was assigned the depth at which \(\text{NO}_3^- \) was first detected. For nearly the entire AMT-3 transect, either a close correspondence existed between \(Z_M \) and \(Z_N \), or \(\text{NO}_3^- \) was detectable to the surface (Fig. 3a). The AMT-3 data were thus used to parameterize the nutrient-sufficient PhotoAcc equations (Fig. 2a). During AMT-2, a general separation between \(Z_M \) and \(Z_N \) was observed from 30°N to 42°S (Fig. 3b).

Fig. 3. Results for the Atlantic Meridional Transect studies: (a, c, e) AMT-3 and (b, d, f) AMT-2. (a, b) Physical mixed layer (\(Z_M: r \), \(r \)) and nitracline (\(Z_N: y \)) depths; gray symbols identify central section of AMT-2 transect that was treated as nutrient-depleted; \(Z_N \) was taken as the depth at which \(\text{NO}_3^- \) was first detectable or assigned a value of 0 m when \(\text{NO}_3^- \) was elevated throughout the water column. (c–f) Measured (\(h \)) and modeled (\(D, D \)) chlorophyll-normalized light-saturated photosynthesis (\(P_{\text{max}}^b: \text{mg C mg chl}^{-1} \text{ h}^{-1} \)); (\(D \)) \(P_{\text{max}}^b \) estimated using the nutrient-sufficient PhotoAcc model (Fig. 2a); (\(D \)) \(P_{\text{max}}^b \) estimated using the nutrient-depleted PhotoAcc model (Fig. 2b). (c, d) Mixed-layer samples collected at 7 m depth. (e, f) Mid-depth samples collected near \(Z_M \).
Data from this region were used to parameterize the nutrient-depleted model (Fig. 2b).

Photoacclimation depths. The PhotoAcc model requires an assessment of the mixing depth to which surface phytoplankton are photoacclimated (Z_{ACCL}). We determined Z_{ACCL} by visually inspecting vertical profiles of σ, NO$_3^-$, PO$_4^{3-}$, and chlorophyll for each sampling date and location, and assigned Z_{ACCL} the shallowest depth at which a vertical gradient was observed in any of these 4 water-column properties. Invariably, Z_{ACCL} corresponded to the depth of Z_M under nutrient-depleted conditions (Fig. 4a). Typically, σ, NO$_3^-$, PO$_4^{3-}$, and chlorophyll all indicated a similar depth for Z_{ACCL} under nutrient-sufficient conditions (Fig. 4b). However, occasionally when Z_M was large, nutrient and chlorophyll profiles indicated a shallower depth for Z_{ACCL} than σ (Fig. 4c). This infrequent condition probably corresponds to a period shortly after a deep mixing event when physical forcing on the system has relinquished and the upper water column is beginning to stratify.

RESULTS

Parameterized PhotoAcc model

The first step in model parameterization was to define the light-chl$_{rel}$ relationship for nutrient-sufficient, mixed-layer phytoplankton (Fig. 2a). This was accomplished by calculating I_g (mol quanta m$^{-2}$ h$^{-1}$) at Z_{ACCL} (m) using measured surface PAR (mol quanta m$^{-2}$ h$^{-1}$) and spectral downwelling attenuation coefficients (K_d: m$^{-1}$) and then fitting Eq. (2) to the inverse of mixed layer $P_{b,max}$ values measured during AMT-3 ($\chi^2 = 0.62$). The resultant relationship was:

$$\text{chl}_{rel} = 0.036 + 0.3 \times e^{-3 \times I_g}$$

where the units (from Eq. 2) are: $a = \text{mg chl m}^{-3}$, $b = \text{mg chl m}^{-3}$, and $c = \text{m}^2 \text{h mol quanta}^{-1}$.

Eq. (4) was used as the light-chl$_{rel}$ relationship for nutrient-sufficient conditions both above and below the mixed layer. The light-dependent relationship for $P_{b,max}$ below the mixed layer (Fig. 2a: inset) was para-
metered by multiplying P_{max}^b values measured below Z_{ACCL} during AMT-3 by calculated chl$\text{_{rel}}$ values and then fitting Eq. (3) to these products as a function of I_0 ($r^2 = 0.72$), where I_0 is the average daily PAR at each sampling depth. The resultant relationship was:

$$P_{\text{max}} = 0.1 + 0.9 \times [1 - (5 \times 10^{-9})]$$

where the units (from Eq. 3) are: d and f = mg C m$^{-3}$ h$^{-1}$, h = dimensionless, and $n = 1$ m2 h mol quanta$^{-1}$.

For nutrient-depleted conditions, Eq. (4) was again used to describe light-dependent changes in chl$\text{_{rel}}$. Mixed-layer P_{max}^b values measured during AMT-2 between 30°N and 42°S (Fig. 3b) were then multiplied by corresponding values of chl$\text{_{rel}}$. The median of these products gave a nutrient-depleted value for P_{max}^b of 0.40 mg C m$^{-3}$ h$^{-1}$ ($SD = 0.15$ mg C m$^{-3}$ h$^{-1}$). The additional, light-dependent decrease in P_{max}^b between the mixed layer and nutricline (Fig. 2b, inset) was calculated by multiplying 0.40 mg C m$^{-3}$ h$^{-1}$ by Eq. (5).

In Eqs. (4) & (5), parameter values were chosen that had the least number of significant digits yet provided a fit to the observational data that was not significantly different from least-squares-derived values. P_{max}^b is calculated with the PhotoAcc model as the inverse of Eq. (4) for mixed-layer, nutrient-sufficient conditions. Below the mixed layer, P_{max}^b is calculated as Eq. (5) divided by Eq. (4). Under nutrient-depleted conditions, P_{max}^b in the mixed layer is calculated as 0.40 mg C m$^{-3}$ h$^{-1}$ divided by Eq. (4), and P_{max}^b between the mixed layer and nutricline is calculated by multiplying 0.40 mg C m$^{-3}$ h$^{-1}$ by Eq. (5), then dividing by Eq. (4).

Model performance

Comparison of modeled and measured P_{max}^b values for nutrient-sufficient regions of the AMT transects (black symbols in Fig. 3) indicated that an effective representation of spatial variability in P_{max}^b ($r^2 = 0.72$, $n = 79$) was achieved both above (e.g. Fig. 3e,d) and below (e.g. Fig. 3e,f) Z_{ACCL}. Likewise, the nutrient-depleted model captured spatial variability in P_{max}^b observed above the nutricline during AMT-2 between 30°N and 42°S (gray symbols in Fig. 3d,f) ($r^2 = 0.71$, $n = 41$). Overall, the PhotoAcc model accounted for 76% of the variance in measured P_{max}^b for AMT-2 and AMT-3 ($n = 120$).

A level of agreement between PhotoAcc estimates of P_{max}^b and values measured during the AMT studies was anticipated, since the AMT data were used for model parameterization. Performance of the PhotoAcc model was therefore further tested using the independent, 6 yr BATS/BBOP data set (Fig. 5). For these data, a single P_{opt}^b value was extracted from each monthly profile of P_z. The near-surface location of P_{opt}^b (~20 m) and minimal photoinhibition ensured that light-saturated photosynthesis (P_{max}^b) was maintained during each measurement over most of the photoperiod. P_{max}^b was calculated for each month using both the nutrient-sufficient and nutrient-depleted models. The nutrient-sufficient model provided the best estimates of P_{opt}^b during and shortly following the seasonal deep mixing events (black symbols in Fig. 5a), which were evidenced in the profiles of Z_M and Z_N (Fig. 5b). These winter mixing events were followed each year by a period of increasing stratification, whereby Z_M gradually separated from Z_N (Fig. 5b). Accordingly, the nutrient-depleted model generally provided the best estimates of P_{opt}^b during the stratified periods (gray symbols in Fig. 5a). Overall, the PhotoAcc model accounted for 83% of the variance in P_{opt}^b for the BATS data set ($n = 79$).

As discussed above in the ‘Methods’ (subsection ‘Nutrient limitation index’), the relationship between Z_M and Z_N simply provides a first-order index of nutrient status. Our model results for the BATS time series (Fig. 5a) clearly indicate that conditions can exist where Z_M and Z_N are separated, yet P_{max}^b exhibits values consistent with the nutrient-sufficient model. Alternative, physiologically-based indices of nutrient status should therefore be investigated. For example, photochemical quantum efficiencies (F_v/F_m) could provide a useful index and can now be routinely measured using stimulated fluorescence techniques (Kolber & Falkowski 1993, Falkowski & Kolber 1995).

Comparison with temperature-dependent P_{opt}^b models

Most regional- and global-scale models for P_{opt}^b are simple functions of sea surface temperature (exceptions by: Balch & Byrne 1994, Longhurst 1995), with considerable variability between models (Behrenfeld & Falkowski 1997b). The AMT and BATS studies encompassed a wide range of sea surface temperatures (5° to 28°C) and thus provided an opportunity to compare the PhotoAcc model with the temperature-dependent models of Megard (1972), Balch et al. (1992), Antoine et al. (1996) and Behrenfeld & Falkowski (1997a) (Fig. 6). None of these earlier models accounted for more than 9% of the variance in P_{opt}^b and P_{opt}^b observed during the AMT and BATS studies ($n = 199$; Fig. 6a–d). In contrast, the PhotoAcc model accounted for 70% of the variance when switching between the nutrient-sufficient and nutrient-depleted equations was strictly based on the correspondence between Z_M and Z_N (Fig. 6e). Performance of the PhotoAcc model was improved by 10% when the best-fit estimates
were chosen (Fig. 6f). We conclude from this comparison that: (1) the PhotoAcc model addresses significant sources of variability in $P_{\text{b\ max}}$ and $P_{\text{b\ opt}}$ that are not adequately captured by simple temperature-dependent functions, and (2) optimal performance of the PhotoAcc model requires replacing our first-order index of nutrient stress with a more quantitative physiological index.

DISCUSSION

The importance of effectively modeling light-saturated photosynthesis at the difficult local scale of daily primary production measurements has been recognized for over 40 yr (Ryther 1956, Ryther & Yentsch 1957). The most common approach to this problem has been to describe $P_{\text{b\ opt}}$ as a function of temperature. Such models capture only a fraction of the observed variability in $P_{\text{b\ opt}}$, because temperature is weakly correlated with causative environmental forcing factors. In contrast, the PhotoAcc model attempts to explicitly describe primary causative relationships at the level of chlorophyll synthesis and changes in the Calvin cycle capacity. With this approach, the model effectively reproduced spatial and temporal variability in light-saturated photosynthesis for the AMT and BATS studies. These field programs do not, however, fully encompass global nutrient, light, and temperature conditions. In the following sections, we evaluate the predictions and hypotheses of the PhotoAcc model, discuss potential alterations to account for additional growth constraints, and propose avenues for global implementation.

Maximum light-saturated photosynthesis

The PhotoAcc model predicts a maximum photosynthetic rate of $P_{\text{b\ max}} = 1/0.036 = 27.5$ mg chl m$^{-3}$ (Eq. 4),
corresponding to nutrient-sufficient, high light conditions. Falkowski (1981) proposed a maximum value of 25 mgC mgchl–1 h–1 by assuming a minimum photosynthetic unit (PSU O2) size of 2000 chlorophyll molecules per O2 evolved and a PSU O2 turnover time (τ) of 1 ms. Choosing a lower PSU O2 or τ value would yield a higher maximum for \(P_{b_{\text{max}}} \). Laboratory measurements suggest that PSU O2 can range from 300 to 5000 (Falkowski et al. 1981), while τ may vary from ≥5 ms to slightly less than 2 ms (Falkowski et al. 1981, Behrenfeld et al. 1998) depending on the excess capacity of the photosystems (Kok 1956, Weinbaum et al. 1979, Heber et al. 1988, Leverenz et al. 1990, Behrenfeld et al. 1998). Thus, a potential exists for \(P_{b_{\text{max}}} \) to exceed 25 mgC mgchl–1 h–1, although values >20 mgC mg chl–1 h–1 are rarely observed in the laboratory (e.g. Glover 1980 reported values between 1.6 and 21 mgC mgchl–1 h–1 for 11 species). In the field, \(P_{b_{\text{max}}} \) (or \(P_{b_{\text{opt}}} \)) values in excess of 20 mgC mgchl–1 h–1 are occasionally reported that exhibit well-defined diurnal patterns (e.g. Malone et al. 1980, Hood et al. 1991). Thus, the PhotoAcc maximum for \(P_{b_{\text{max}}} \) of 27.5 mgC mgchl–1 h–1 is (1) close to the theoretical maximum value proposed by Falkowski (1981), (2) well within the range of variability suggested by laboratory measurements of PSU O2 and τ, and (3) consistent with the maximum \(P_{b_{\text{max}}} \) values reported from previous field studies.

Temperature revisited

We consider temperature to have a negligible direct influence on \(P_{b_{\text{max}}} \) above 5°C for the following reasons:

1. Laboratory studies with phytoplankton monocultures indicate a clear temperature-dependence for maximum algal growth rates (Eppley 1972), but a variable, species-dependent influence on \(P_{b_{\text{max}}} \) (e.g. Steemann Nielsen & Hansen 1959, Steemann Nielsen & Jørgensen 1968, Harris 1978, Morris 1981, Post et al. 1985). Enzymatic temperature optima differ between species according to the ambient temperature from which they were isolated. Thus, in field samples with taxonomically diverse phytoplankton assemblages acclimated to their ambient conditions, temperature-dependence of \(P_{b_{\text{max}}} \) is likely to be minimal.

2. Although the activity of Calvin cycle enzymes, such as ribulose-1,5-bisphosphate carboxylase (RuBisCO), exhibits classic Arrhenius temperature-dependence, any decreases in activity at lower temperatures may be offset by increasing enzyme concentrations
mann Nielsen & Hansen 1959, Steemann Nielsen & Jørgensen 1968, Geider et al. 1985, Geider 1987). In other words, sensitivity of \(P_{\text{max}} \) to temperature may be diminished if increases in enzyme concentration keep pace with decreasing activities at lower temperatures.

(3) Temperature-dependent changes in the Calvin cycle capacity may be paralleled by changes in chlorophyll (e.g. Durbin 1974, Yoder 1979, Verity 1981, Lapointe et al. 1984), such that normalization of \(P_{\text{max}} \) to chlorophyll masks temperature dependence.

Below 5°C, the physiological adjustments described above may not be sufficient to eliminate temperature effects on \(P_{\text{max}} \). Currently, the minimum mixed-layer \(P_{\text{max}} \) value predicted by the PhotoAcc model is 3 mg C mg chl \(^{-1} \) h \(^{-1} \). This value is near the maximum \(P_{\text{opt}} \) value (<0.5 to \(~3 \text{ mg C mg chl}^{-1} \text{ h}^{-1} \)) reported by Dierssen et al. (2000) for Antarctic phytoplankton sampled from -2 to 2°C waters. Low \(P_{\text{opt}} \) values measured in the Southern Ocean partly result from prolonged periods of subsaturated photosynthesis causing a weaker relationship between \(P_{\text{max}} \) and \(P_{\text{opt}} \). Nevertheless, a direct temperature effect is likely, and could be accounted for in the PhotoAcc model by treating \(P_{\text{max}} \) as a temperature-dependent variable in the nutrient-sufficient model. For example, the following relation (where \(T = \) temperature):

\[
P_{\text{max}} = 0.4 + 0.6 \times [1 - \exp^{-0.6 \times (T + 6)^{0.5}}]
\]

would provide a temperature-dependent decrease in \(P_{\text{max}} \) below 5°C while essentially leaving modeled values above 5°C unaltered.

Acclimation irradiance (\(I_o \))

Modeling photoacclimation as a function of light at the bottom of the mixed layer is the simplest formulation mathematically, but its physiological representation is dependent on the kinetic balance between responses to low and high light. Specifically, if photoacclimation follows first-order kinetics with similar rate constants for both high and low light, \(P_{\text{b}} \) will vary as a function of the average light in the mixed layer (Falkowski & Wirick 1981, Lewis et al. 1984, Cullen & Lewis 1988). Likewise, \(P_{\text{b}} \) will scale to an irradiance less than the average if responses to low light are stronger (Cullen & Lewis 1988) and to higher than average light if high-light effects dominate (Vincent et al. 1994, Geider et al. 1996).

Photoacclimation rate constants are typically derived from laboratory ‘light-shift’ experiments, where cells acclimated for multiple generations to a given irradiance are transferred to much higher or lower light (e.g. Lewis et al. 1984). Riper et al. (1979) suggested that decreases in cellular chlorophyll following a shift to high light result from (1) dilution by coincident cell division and cessation of chlorophyll synthesis, (2) photooxidation, and (3) enzymatic breakdown. If these 3 processes combine to yield a kinetic response of similar magnitude and opposite sign as a shift to low light (Lewis et al. 1984), then phytoplankton acclimate to the average light in the mixed layer by continuously synthesizing and degrading chlorophyll at time scales of <1 h as they transit between the surface and \(Z_{\text{ACCL}} \).

Light-shift experiments, however, do not mimic natural conditions well, since mixed-layer phytoplankton are preconditioned to periodic high-light exposures and thus are physiologically poised to effectively dissipate excess excitation energy (Behrenfeld et al. 1998). Goericke & Welschmeyer (1992) demonstrated that chlorophyll turnover is independent of light level in preconditioned cells, and concluded that photooxidation and enzymatic degradation of chlorophyll are artifacts of light-shift experiments. Chlorophyll synthesis at subsaturating light (Escoubas et al. 1995) should thus dominate over the dilution effect of cell division, causing photoacclimation to scale to a lower than average light level. This conclusion implies that cellular chlorophyll changes at the longer time scale of mixed-layer deepening and shoaling. Additional analyses with mixed-layer phytoplankton are clearly needed to better resolve photoacclimation strategies in nature.

Nutrient limitation

The PhotoAcc model simply switches between nutrient-sufficient and nutrient-depleted equations rather than employing a more gradual transition as a function of nutrient stress. Falkowski et al. (1989) reported a similar switch in the ratio of photosynthetic electron transport (PET) components and RuBisCO for *Isochrysis galbana* grown under 9 different levels of nitrogen limitation in chemostats. Increasing nutrient stress (i.e. decreasing growth rates) decreased cellular concentrations of all measured components, with a constant stoichiometry for growth rates between 0.59 and 0.96 d \(^{-1} \). At growth rates <0.59 d \(^{-1} \), the relationship between PET components and RuBisCO abruptly changed by 60% to a new equilibrium (Fig. 7). The magnitude of this shift is the same as the decrease in \(P_{\text{max}} \) used in the nutrient-depleted PhotoAcc model. We are unaware of any physiological explanation for why such an abrupt change occurs, and few laboratory studies have specifically addressed this problem.

Nutrient conditions represented by the AMT and BATs studies included nutrient-sufficient, phosphate-depleted (BATS) (Michaels et al. 1994, 1996), and possibly nitrogen-depleted (AMT-2). We anticipate that...
an additional set of PhotoAcc equations will be necessary for modeling $P_{\text{b max}}$ in iron-limited regions. Iron-limitation causes unique stoichiometric changes in the composition of the photosystems, most notably a decrease in cytochrome $b_{6}f$ and a higher Photosystem II to Photosystem I ratio (PSII:PSI) (Guikema & Sherman 1983, Sandmann 1985, Greene et al. 1992, Straus 1994, Vassiliev et al. 1995, Behrenfeld & Kolber 1999). A high PSII:PSI ratio will diminish chlorophyll-specific efficiencies for converting photochemical energy to the reducing equivalents necessary for carbon fixation, and should thus decrease $P_{\text{b max}}$ relative to similar levels of growth limitation by nitrogen or phosphate.

Global implementation

The immediate goal of the research described here was to develop an effective field-based model for $P_{\text{b max}}$. Our broader objective, however, is to establish a robust $P_{\text{b opt}}$ algorithm for estimating global oceanic primary production from satellite ocean-color data. Implementing the PhotoAcc model will require temporally resolved mixed-layer depth and nutrient-depletion fields. As an initial attempt, monthly climatological fields can be assembled from historical data sets (e.g. US National Oceanographic Data Center, Silver Spring, MD), but eventually data coincident with satellite ocean-color measurements will be preferred. Coupled ocean models that assimilate satellite observational data (e.g. surface wind) could be used to generate mixed-layer depth fields. Alternatively, remote-sensing technologies may soon permit global surveys of surface mixing depths, and research is now underway investigating potential lidar techniques for such measurements. Combining remotely sensed sea-surface temperature fields with nutrient-depletion/temperature relationships may prove useful for assessing temporal changes in nutrient status. Again, coupled ocean models may represent an alternative technique. A variety of approaches may therefore be explored for implementing the PhotoAcc model, and each presents an exciting challenge for future research.

Perspective

Deciphering decadal-scale changes in oceanic primary production from the much larger amplitude signals of seasonal and interannual variability requires foremost a long-term commitment to remote-sensing programs monitoring changes in plant biomass, as well as process-oriented models of depth-dependent changes in phytoplankton biomass and assimilation efficiencies. An evolution from empirical to analytical models of phytoplankton photosynthesis has been realized primarily in the spectral description of the underwater light field (e.g. Platt & Sathyendranath 1988, Morel 1991, Platt et al. 1991, Antoine et al. 1996). Demonstrable improvements in model performance from these achievements have, unfortunately, been masked by the overwhelming influence of ineffective local-scale models of physiological variability (Balch et al. 1992, Behrenfeld & Falkowski 1997a,b, Siegel et al. 2000). The PhotoAcc model presented here provides a framework for future improvements in the analytical characterization of physiological variability and, based on comparisons with AMT and BATS data, already incorporates 2 critical forcing factors: light and nutrients.

The importance of environmental physical-chemical variability to physiological traits of algae is well illustrated in the BATS data by the correspondence between changes in $P_{\text{b opt}}$ and the temporal rhythm of seasonal mixing and stratification (Fig. 5). Nutrient availability at this site clearly influences light-saturated photosynthesis at the seasonal scale, while higher frequency variations in $P_{\text{b opt}}$ are dominated by photo-acclimation responses to changes in the mixed-layer depth, surface PAR, and phytoplankton biomass (due
to associated changes in vertical light attenuation. The BATS data also suggest a significance in the recent history of a water column, as occasional midsummer switches between nutrient-depleted and nutrient-sufficient values conceivably reflect the passing of a mesoscale eddy with a significantly different history than the water masses sampled the month before and the month after.

The conceptual basis of our PhotoAcc model entails a variety of hypotheses regarding sources of variability in light-saturated, chlorophyll-normalized photosynthesis. These include a dominant kinetic response to low-light over high-light exposure, an irradiance-dependence of the Calvin cycle capacity under chronic low-light conditions, a nutrient-dependent switch in the stoichiometric balance between light-harvesting and Calvin cycle components, and a temperature-independence of \(P_{\text{max}} \) above 5°C in natural phytoplankton assemblages. Additional field and laboratory studies will be necessary to test these hypotheses and to expand the PhotoAcc model to encompass iron-limiting conditions, temperature effects at <5°C, and possibly species-dependent variability in phytoplankton pigment composition.

Acknowledgements. M.J.B. thanks John Chapman, Ricardo Letelier, Paul Falkowski, Richard Geider, and Zhignev Kolber for helpful discussions and inspiration, Elizabeth Stanley for encouragement, and the US National Aeronautics and Space Administration (NASA) (Grant UPN161-35-06-08) for its continued support. BATS data were assembled by Toby Westberry and Margaret O’Brien. The US JGOFS BATS program is supported by the US National Science Foundation. D.A.S.’s contributions were supported by NASA. E.M. thanks Manuel Varela and Beatriz Mourino for assistance during the AMT studies and Alan Pomroy, Colin Griffiths and Malcolm Woodward for providing nutrient data. S.B.H. thanks J. Brown, C. Dempsey, S. Martorena, and G. Moore for AMT support and J. Aiken for his diligence and commitment to supporting high-quality AMT optical data.

LITERATURE CITED

Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085
Falkowski PG, Owens TG, Ley AC, Mauzerall DC (1981) Effects of growth irradiance levels on the ratio of reaction
centers in two species of marine phytoplankton. Plant Physiol 68:969–973
Myers J (1946) Culture conditions and the development of the photosynthetic mechanism. J Gen Physiol 29:419–427
Post AF, deWit R, Mur LR (1985) Interaction between temperature and light intensity on growth and photosynthesis of

Talling JF (1957) The phytoplankton population as a compound photosynthetic system. *New Phytol* 56:133–149

Editorial responsibility: Otto Kinne (Editor), Oldendorf/Luhe, Germany

Submitted: October 24, 2000; Accepted: May 10, 2001

Proofs received from author(s): February 12, 2002